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Game Theory – Improvise the Play

“Game theory is about exploring of freedom of choices and the equilibrium which comes 
from understanding the consequences of freedom.”

–Vineet Raj Kapoor

“Game theory was originally developed by the Hungarian-born American mathematician John von Neumann 
and his Princeton University colleague Oskar Morgenstern, a German-born American economist, to solve 
problems in economics. In their book The Theory of Games and Economic Behavior (1944), von Neumann 
and Morgenstern asserted that the mathematics developed for the physical sciences, which describes 
the workings of a disinterested nature, was a poor model for economics. They observed that economics 
is much like a game, wherein players anticipate each other’s moves, and therefore requires a new kind of 
mathematics, which they called game theory. (The name may be somewhat of a misnomer—game theory 
generally does not share the fun or frivolity associated with games.)” – Encyclopedia Britannica[1]

Game theory is a concept with applications far beyond the theoretical. Its unique modus operandi comes 
from the fact that it gives an equal opportunity to each one of the players/agents involved in a game/
operation. Players carve out their best strategy to maximize the results/rewards for themselves while 
considering their opponents’ tactics; this gives a result that considers the reasonable decision-making of all 
those involved and may be the most favorable outcome for all.

Modern-day applications of game theory are spread across a variety of industries and sectors. For example, 
take marketing a product. An advanced competitive analysis would strongly recommend considering what 
the competition is offering across that product line as a factor in optimizing cost and profit.

Game Theory Components

As depicted below, key considerations in game theory include: 

• Consumers/Decision Makers: Within the context of the game, they are the actors or players.

• Rewards: The benefit(s) any player receives from the outcome.

• Results: The outcome derived at the end of all favorable/optimal strategies.

• Strategies: The unique set of actions any player takes within the game (which may be situational).

• Decision & Interdependent: The choices each player can make independently (decisions) and the choices 
that are influenced by other players’ actions (interdependent).
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• Nash Equilibrium: The state when “each player is assumed to know the equilibrium strategies of the 
other players, and no one has anything to gain by changing only one's own strategy[…] If each player 
has chosen a strategy – an action plan based on what has happened so far in the game – and no one 
can increase one's own expected payoff by changing one's strategy while the other players keep theirs 
unchanged, then the current set of strategy choices constitutes a Nash equilibrium.”[2]

An Example of Game Theory

The most famous example of game theory is the Prisoner’s Dilemma:

Two prisoners must choose between staying silent or confessing to a crime. There are three scenarios:

1. Both prisoners stay silent and go to prison for a year.

2. Either one confesses and the other stays silent; the silent prisoner goes free, while the other gets 20 
years in prison.

3. Both confess and each gets 5 years in prison.

The only condition is that the prisoners can’t communicate with each other. Thus, both confess – driven by 
fear of being penalized for the other person’s action. The only winner is the jailer, who applied game theory 
to amplify his result.

Image: bbc.com

https://www.bbc.com/news/magazine-33254857
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Game Theory Applications in Business

Real-world applications of game theory include predicting the behavior of the various participants in a 
scenario where the action of one depends on the action of others. Some common scenarios include:

• Deciding on a product valuation.

• Buying or selling on the stock market. 

• Launching a new product.

https://www.britannica.com/science/game-theory
https://en.wikipedia.org/wiki/Nash_equilibrium
https://www.bbc.com/news/magazine-33254857
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Modern Applications of 
Game Theory

Statistictionary

What Is Game Theory? 
It is a branch of applied mathematics that deals with the analysis of situations involving parties (called 
players) that make interdependent decisions. The formal origin of game theory can be attributed to 
mathematician John von Neumann and economist Oskar Morgenstern. In their book, The Theory of Games 
and Economic Behavior (1944), they asserted that game theory is better suited to describe economic 
behavior than physical sciences.1 But the seeds for the discipline could be found alongside the emergence 
of probability theory back in 1654.2 

What Does a Game Theory Problem Look Like?
Just like a game can be described by its characteristics of the number of players (1,2…n players), information 
sharing between players (perfect or imperfect), and conflict of interest between players (constant sum or 
variable sum), game theory problems and the subsequent approaches can be distinguished by the underlying 
parameters.

The following is a classic example of a two-player constant sum game with imperfect information – i.e. 
two competing candidates in an election must decide on how to react to a pressing issue to maximize their 
vote share. Each candidate can choose to support, oppose, or evade the issue. Depending on what each 
candidate chooses, the payoff matrix looks like this:

Candidate 1

Candidate 2

Support Oppose Evade

Support 60% 40% 20% 80% 80% 20%

Oppose 80% 20% 25% 75% 75% 25%

Evade 35% 65% 30% 70% 40% 60%

Table 1: Payoff matrix for two-player constant sum game with imperfect information

The rational decision both players should choose involves maximizing their own vote share against any and 
every action of the opponent. This can simply be achieved using either the minimax or maximin approach.

Here is the solution using the minimax approach: For Candidate 2, the minimum vote that can be 
achieved for each action is 20% (Support), 25% (Oppose), and 30% (Evade). The maximum of those is 30% 
(corresponding to evasion). The rational decision for this candidate would be to evade the issue. Similarly, for 
Candidate 1 the rational decision would be to oppose the issue.
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This type of solution is called a saddle-point, where the maximum of the column is the minimum of the 
row (or vice-versa). It derives its name from the shape of a saddle and while it may or may not exist in the 
game of imperfect information, it always exists in games of perfect information. In the game of perfect 
information, payoff at this point is the value of the game. 

The Nash Equilibrium
Another aspect that can drastically affect the outcome or the strategies chosen by the players is whether 
the game is cooperative or not. Cooperative game theory describes (at a high level) the structure, strategies, 
and payoffs of coalitions in cooperative games.4 For non-cooperative games, the Nash equilibrium defines 
a strategy profile, a set of strategies (one for each player) so that no player can do better by unilaterally 
changing their strategy given that the strategy of other players is fixed.

Formally, let Si  be the set of all possible strategies for player i, where i = 1,…,N . Let s* = (s*i ,s*-i) 

 be a strategy profile, a set consisting of one strategy for each player, where  s*-I  denotes the  N-1  
strategies of all the players except  i . Let ui(s*i ,s*-i)  be player i's payoff as a function of the strategies. The 
strategy profile s*  is a Nash equilibrium if

ui(s*i ,s*-i)  ≥  ui(si ,s*-i)  Ɐ si ϵ Si 5

If the equality doesn’t hold, the strategy profile is known as a strict Nash equilibrium; otherwise, it is termed 
a weak Nash equilibrium.

Modern Applications

Game theory is used in conjunction with a variety of other disciplines; the applications depend on the 
complexity of the problem. Some of the most notable ones are:

1. Price wars in oligopoly markets.

2. Analyzing and designing political campaigns (as seen in the example in this article).

3. Auction algorithms and analysis. These are extensively used for ad bidding by search engines. This is an 
example of algorithmic game theory.

4. Cost-sharing algorithms and analysis. These are commonly used in building inter-community resources.

5. A flights assignment model based on zero-sum sequential game and CDM mechanisms.6

6. Dynamic pricing strategies for demand-side management in smart grids.7

Figure 1: A saddle point 3
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RDyPy: Interface to Backward 
Dynamic Programming

Coder’s Cauldron

DyPy’s goal is to provide an interface to backward dynamic programming that supports the following 
priorities (in order): (3

1. Ease of learning and use.

2. Flexibility (can be adapted to new problems).

3. Speed (once the previous goals are met).

Dynamic Program
The Dynamic Program class is the core of DyPy. Each problem you wish to solve will involve creating an 
instance of this class and attaching the classes below to it in ways that tell it how to solve your problem.
(3)  DyPy should be able to handle problems with numerous state variables, which is a significant design 
consideration.

Dynamic Program manages all data and the flow of the optimization. By default, it will build all the stages 
and manage their tables, but this part of the process can be customized as well.

Objective Functions
The objective function will do some of the heavy lifting for your dynamic program and must be created 
by the user for each specific optimization problem. In each stage of the optimization, DyPy will call the 
objective function for each combination of state variables and stage variables; the objective function must 
return the cost or benefit value for that set of inputs. The objective function will be provided access to the 
Stage object for the stage it is currently evaluating, as well as the values of all the state variables and the 
decision variable. These will be provided as keyword arguments to the objective function.[3]

Stage
A stage provides the set of potential states and decisions at each modelled point (sequential moment) in 
the dynamic program. Most classes eventually tie to either the Dynamic Program class or the Stage class, 
which does most of the heavy lifting and data management in this package. The Dynamic Program class 
automatically creates and handles stages by default, but you can alter this behavior for more complex 
scenarios. (3)

State Variable
State Variable objects provide options for potential future conditions. A Dynamic Program can involve 
multiple state variables – in which case, all permutations of all state variable values are evaluated. 

https://nickrsan.github.io/dypy/build/html/conceptual_overview.html#dynamicprogram
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Be careful, because the solution space can quickly grow as you add more state variables with more options. 
A State Variable should have a name and a set of potential values. By default, the potential values can be 
generated for you if you provide a minimum value, a maximum value, and the discretization size of steps in 
between.

Decision Variable
Decision Variables describe potential choices that can be made at each stage. Like State Variable objects, 
they have names and values. However, they are managed slightly differently. DyPy currently only supports a 
single decision variable; several decision variables might theoretically be included, with increasing complexity 
to both code and solution time. Both Decision Variables and State Variables are provided to the objective 
function to determine the value of each potential decision when the system is in a certain state. (3)

Prior
Priors are used in DyPy in two ways, each referring data from a previous stage that should be included in the 
present stage. This requirement arises both during the backward matrix formulation and the forward path 
calculation. The dypy.Prior techniques of applying future stage values to older stages are provided by the 
prior class and subclasses. dypy.SimplePrior has a single-variable implementation that may or may not work 
for multi-variable issues. To offer a new implementation, this class can be subclassed and the apply method 
overridden. The new matrix should be returned by the apply method.[3]

By default, the Prior class to be used should be provided to the Dynamic Program upon creation, but they 
can also be overridden per-stage in case of a need to apply priors differently at different stages.

Reducer
Reducers are still to be implemented; they provide a tool for turning multi-state variable problems into single 
state variable problems before calculating the best path. One state of a stochastic dynamic program may be 
determined by your decisions, while other states are determined by probabilistic future events. Reducers can 
help reduce the probabilistic states so that a single state variable reflecting the needs of the decision can be 
used for the forward optimal path calculation.

Use of reducers is not required, and those with need for a true stochastic dynamic program may wish to 
implement branching behavior reflecting the uncertainty in future stages. The Stage and Prior classes would 
then need to be overridden to provide such behavior in lieu of using reducers.

Programming Effort
You’re a programmer working hard to triage bugs in your software before a big release coming up. In your 
bug tracker, bugs are split into 5 categories: “Core”, “UX/UI”, “Network”, “Database”, and “API”. The release is 
in 12 days, but your team manager wants to make sure to get some fixes in each. They ask you to spend no 
more than 5 days on any single area and at least one day on each, but other than that, they just want you to 
fix the most bugs possible.

Considering the prioritization of tickets in the tracker, you estimate the number of bugs you fix in each 
category as a function of time as follows:
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Code

# we have 12 days available to us for work

state_variable = dypy.StateVariable("Days Available for Category", values=range(1, 13))

# but we can only spend between 1 and 5 days working on a single category

decision_variable = dypy.DecisionVariable("Time on Category", options=decision_options)

def objective_function(stage, days_available_for_category, time_on_category):

   """

        When the objective is called, the solver makes the stage, state variables,

        and decision variable available to it. The keyword argument names here

        match the names of the state variables and decision variables (which will be

        passed as keyword arguments; the order isn't important, but the name is). The name

        is automatically derived by lowercasing the name of the variable and replacing

        spaces with underscores. It will remove digits from the front if they are present

        so that the name is a valid python identifier

       In this example, we can think of these variables as providing:

            1. stage - this will give access to the DyPy.stage object

            2. state - this just provides access to the state value being assessed, not the object

            3. decision - this just provides access to the decision value being assessed, not the object

    """

   # we are given benefits, so defining here - each category is a row, each column is a

    # number of days, and the value is how much benefit we get from working on that category

    # for that long

    benefit_list = [

        # column 0 means no time spent on it, so we get no benefit

        [0, 2, 5, 7, 8, 10],

        [0, 3, 6, 8, 9, 9],

        [0, 1, 2, 4, 7, 9],

Bugs closed by days of effort in each area

Category 1 Day 2 Days 3 Days 4 Days 5 Days

Core 2 5 7 8 10

UI/UX 3 6 8 9 9

Network 1 2 4 7 9

Database 2 3 6 8 11

API 4 6 8 9 10
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        [0, 2, 3, 6, 8, 11],

        [0, 4, 6, 8, 9, 10],

    ]

# can't spend more time than we have available

    if time_on_category > days_available_for_category:  

# so exclude these options - sets to high positive or negative value

        return stage.parent_dp.exclusion_value  

    else:

        return benefit_list[stage.number][time_on_category]

# define the dynamic program and tell it we have four timesteps

dynamic_program = dypy.DynamicProgram(timestep_size=1, time_horizon=5,

objective_function=objective_function, calculation_function=dypy.MAXIMIZE,

prior=dypy.SimplePrior)

dynamic_program.decision_variable = decision_variable

dynamic_program.add_state_variable(state_variable)

# each category will be a stage, in effect - tell it to create all five stages as empty

# assigns names by default, but we can override them

dynamic_program.build_stages(name_prefix="Category")  

# make a list of names in the same order they're used in our objective function

stage_names = ["Core", "UI/UX", "Network", "Database", "API"] 

# and use it to set the value of .name for each stage

for i, stage in enumerate(dynamic_program.stages): 

dynamic_program.stages[i].name = stage_names[i]

# run the dynamic program - results are logged to python logger `dypy` and decisions are set on each stage 
as .decision_amount

dynamic_program.run()  
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Using Graphs to Illuminate 
Analytical Problems

Vivid Visualization 

Visualization has proven to be key in data science. Data visualization methods vary from simple Excel graphs 
to network diagrams with customized visuals. These networks help us to understand everything from social 
media to real-world applications.

Network Visualization helps us understand the semantics of macro patterns through the use of micro 
patterns. It symbolizes one possible reality, not the sum of all possible realities. Scientific visualization 
enhances the questions arising from the data, and the truth of the data is enhanced by the visualization. In 
turn, this leads us and others to enquire about the data.

Envisioning data through possible filters to reduce its dimensionality can be implemented through 
unsupervised algorithms, such as clustering algorithms, grouping the nodes by means of similarity, or page 
ranks that, based on node sizes, signify a single data can have multiple visualization facets. To visualize the 
link dataset, visualization packages like the open-source Gephi can be used. The size and density of the 
graph signifies that it shrinks to the specific subset; edge count reduces the graph to significant edges. Node 
positioning is implemented by the Open Ord layout algorithm and colored by Blondel et al’s modularity, with 
coloration selected by Gephi

Source: Network Visualization

Source:Graph

https://imageio.forbes.com/specials-images/dam/imageserve/955572446/960x0.jpg?format=jpg&width=960
https://imageio.forbes.com/blogs-images/kalevleetaru/files/2019/02/2019-GDELT-GKG-2016-2018-Outlink-Graph-Random10KAll-2K-W-1200x1200.jpg?format=jpg&width=960
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The Open Ord algorithm utilizes random seed methodologies, each time giving different results. This 
algorithm results in differences in visualizations on consecutive runs, moving out to one of the best 
visualizations. It helps to separate the cluster of greatest importance. Changing the background color creates 
clear separation of the nodes and makes a sharper contrast between the clusters, heightening the impact. 
Color selection can also change how the user perceives the graph.

Changing the thickness of the network lines changes the view from micro structure to macro structure. 
Adjusting the thickness of each edge based on edge strength makes the central core less prominent and 
emphasizes the isolated nature of small clusters around the boundary.

Graphs are often displayed as edge visualizations, where nodes indicate the focal point of the image. 
Algorithmic and methodological decisions have a major impact on visual representations.

Source: Network

Source: Graph

https://imageio.forbes.com/blogs-images/kalevleetaru/files/2019/02/2019-GDELT-GKG-2016-2018-Outlink-Graph-Random10KAll-2K-1200x1200.jpg?format=jpg&width=960
https://imageio.forbes.com/blogs-images/kalevleetaru/files/2019/02/2019-GDELT-GKG-2016-2018-Outlink-Graph-Random10KAll-2K-1200x1200.jpg?format=jpg&width=960
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Source : what-makes-a-good-data-visualization

Figure 1: Different Types of Visuals

Best Practices for Data Visualization
The overall best practice is to use data visualization to get to the truth of the data.

• The first key is to address the audience and design the visualization according to the audience’s needs, 
level of understanding, etc. This helps the user to use the data to make business decisions.

• The second key is to understand what each visual signifies and then to choose a visual that is understood 
by the user. Different types of visuals include line charts, histograms, heat maps, scatter plots, and pie 
charts (among many others).

https://www.informationisbeautiful.net/visualizations/what-makes-a-good-data-visualization/
https://www.analyticsvidhya.com/blog/2021/08/effective-data-visualization-techniques-in-data-science-using-python/
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• Text clarifying the meaning of the visualization should be applied carefully and with due thought.

• Multiple visualization runs should be used; out of these visualizations, the best should be tuned to 
applications.

• To create the visualization, correct visualization tools must be applied. Top data visualization tools 
include Tableau, PowerBI,  and others.

• The visualization should be enhanced by thoughtful use of color.

• Attractive and intuitive dashboards can also be used to enhance data visualizations.

• Visualization should involve the user.

• Visualization should present meaningful business insights.

Source: Data Visualization Tools

https://www.forbes.com/sites/kalevleetaru/2019/02/24/why-data-visualization-is-equal-parts-data-art-and-data-science/?sh=ddc37de6dec7
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Pattern Clustering Using 
Cooperative Game Theory

Thriving Traction

Clustering is grouping a set of objects based on some common characteristics. Clustering has applications 
in many fields, including data analysis, pattern recognition, image analysis, data compression, computer 
graphics, and machine learning.[1] Clustering has also been used to solve large-scale problems. Determining 
the number of output clusters k is challenging. In this case, using cooperative game theory provides a new 
way of addressing this problem by using a variety of solution concepts.[3]

Cooperative Game theory (CGT) is a model of game theory where the players (also known as coalitions) use 
cooperative behavior in competition. It is also referred to as a coalitional game.[2] The coalition behavior of 
the players is monitored by external agencies under regulatory authority. [2]

Game-Theoretic Solution Concepts for the Clustering Problem
Specifying value for each coalition gives a cooperative game. The cooperative game has a finite set of 
players N (also known as the grand coalition) and a characteristic function ν:  2N → R. It defines the value 
ν(S) of any coalition where S ⊆ N. The function describes how much collective payoff can be gained by a set 
of players by forming a coalition; the game is also known as value or profit game.[1]

The formation of the grand coalition N is the main assumption in cooperative game theory. The challenge 
now is fairly allocating the payoff v(N) among the players. This assumption is not restrictive; even if players 
split off and form smaller coalitions, we apply solution concepts to the subgames defined by whatever 
coalitions are formed.[4] 

Let’s explore the solution concepts to utilize their properties for the clustering game. A Shapley value is 
based on average fairness and stability, while Nucleolus is based on both min-max fairness and stability. Of 
these solution concepts, Nucleolus properties are the most suitable for the clustering game.[3] Nucleolus 
comes with its drawbacks, most notably that it is computationally expensive. We can use other solution 
concepts for computational ease. These are mentioned below:

A. The Core

When the set of attainable allocations cannot be improved further by a coalition (a subset) of the economy's 
agents, it is called the Core. An allocation is said to have the Core property if there is no coalition that can be 
improved.[5]

 Let (N, ν) be a coalitional game with transferable utility (say, TU). Let x = 〖(x〖_1,…,x_n) where x_i  is the 
payoff of player i. Then, the Core consists of all payoff allocations, that satisfy the following properties:

1. individual rationality, i.e.,       ≥ ν({i}) ∀ i ∈ N 

2. collective rationality i.e., 

3. coalitional rationality i.e., 

A payoff allocation that satisfies individual rationality and collective rationality is called an imputation.
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B. The Nucleolus

The allocation that minimizes the dissatisfaction of the players from the allocation they can receive in a 
game is the Nucleolus.[3] For every x, consider the excess defined by

C. The Shapley Value

The Shapley value is the unique payoff vector that satisfies monotonicity, efficient and symmetric.[4] To each 
cooperative game, it assigns a unique distribution of a total surplus generated by the coalition of all players.[6]

If it follows the fairness-based axioms already discussed, then any imputation φ = 〖(φ〗_1, ..., φ_n) is a Shapley 
value. For any general coalitional game with transferable utility (N, ν), the Shapley value of player i is given by

Clustering Based on Cooperative Game Theory
Let’s assign maximum Shapley value for each cluster as cluster center. If the center has a high density 
surrounding, we will consider other close points to be center; else it will consider more far away points. 

Algorithm: DRAC (Density-Restricted Agglomerative Clustering) [3] 

Require: Dataset, the maximum threshold for similarity δ ∈ [0, 1], and threshold for Shapley value multiplicity 
γ ∈ [0, 1] [3]

1. Start with checking pairwise similarities between all points in the dataset. 

2. Compute the Shapley value for each point i.

3. Arrange the points in decreasing order of their Shapley values. Let g_M be the global maximum of 
Shapley values. Start a new queue, it’ll be our expansion queue

e_s(x) is a measure of the unhappiness of S with x. The goal of Nucleolus is to minimize the most unhappy 
coalition, i.e., the largest of the e_s(x). This could also be written in linear programming problem formulation 
as min Z, subject to

It combines several fairness criteria with stability. It is the central imputation, and thus in the min-max sense it 
is fair and optimum. If the Core is non-empty, the Nucleolus is in the Core.[4] 

Π = set of all permutations on N. 

 x_i^π  = contribution of player i to permutation π.
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4. Next, start a new cluster. Of all the unallocated points, choose the point with the maximum Shapley 
value as the new cluster center. Let l_M be its Shapley value. Mark those points as allocated. Add it to 
the expansion queue.

5. Set β = δ q √(l_M/g_M ) 

6. For each unallocated point where the similarity of that point to the first point in the expansion queue 
is at least β, add it to the current cluster and mark it as allocated. If the Shapley value of that point is at 
least γ-multiple of l_M, add it to the expansion queue. 

7. Remove the first point from the expansion queue. 

8. If the expansion queue is not empty, go to step 6. 

9. If the cluster center is the only point in its cluster, mark it as noise. 

10. If all points are allocated a cluster, terminate.

Results
Let’s compare our algorithm with some existing algorithms. SHARPC (security- and heterogeneity-driven 
scheduling algorithm) proposes a novel approach to finding the cluster centers and giving a good start 
to K-means using a game theoretic solution concept; the Shapley value which thus results in the desired 
clustering. The limitation of this approach is that it is restricted to K-means; this is not always desirable, 
especially when the classes have unequal variances or when they lack convexity.[3] 

SHARPC cannot detect clusters that are not convex. If the threshold is increased to solve merging of 
different clusters (the light blue clusters in Fig 1), more clusters are formed and the larger clusters get 
subdivided into several small clusters.

The DRAC cluster (the light blue clusters in Fig 2) is highly dense; its cluster center has very high Shapley 
value. This results in a very high value of β, the similarity threshold. The red and light blue clusters are 
distinct. The red cluster is a low-density cluster (owing to the low Shapley value of the cluster center). It has 
a low β value, the similarity threshold, thus allowing more faraway points to be a part of the cluster.

Fig 1: Clusters as discovered by SHARPC

Image credits: Pattern Clustering using Cooperative Game theory 

Fig 2: Clusters as discovered by DRAC

https://www.researchgate.net/publication/51969290_Pattern_Clustering_using_Cooperative_Game_Theory
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The Mythology of 
Game Theory

Folk-Wisdom’s Fallacy

The Mythology of Non-Cooperative Games 
Non-cooperative games study the conflict situations among players – i.e., it is the study of situations where 
the payoffs don’t simply depend on the player’s own action, but also on the action of another player. Game 
theory assumes players are rational; each player will always act to maximize their payoff given their beliefs 
about how other players will play. 

It can be concluded that game theory is a cognitive science; thus, it has its own assumptions that players are 
aware of all the actions which are available to them. One of the salient features of game theory is that one 
can always design different payoffs, settings, number of players, and actions and information available to 
each player. These differences lead to different strategies, equilibria, and outcomes.1 

Research has shown that a player’s real-life behavior does not align with the predictions derived from game 
theory. The differences in real-life behavior and traditional assumptions of game theory can be attributed to:

• The cognitive biases of individual players while making decisions. 

• A mismatch in game payoffs to players’ expected payoffs.

• A player’s limitations in thinking about other players’ strategy and behavior. 

Dysfunction with Nash Equilibria
We all are human beings, so our approach to solving problems can be cognitively very different from 
each other. We have flexibility in our approaches, and these choices sometimes do not comply with 
Nash equilibrium strategies. It is not always a dysfunction; people make their choice according to their 
conjectures, so it is important to correct the assumptions of Nash equilibria as the use of game theory 
increases in various decisioning domains. According to one analysis:

“[The] Nash equilibrium (NE) concept entails the assumption that all players think in a very similar 
manner when assessing one another strategies. In a NE, all players in a game base their strategies not 
only on knowledge of the game’s structure but also on identical conjectures about what all other players 
will do.”2 

The mythology of game theory is that these identical conjectures are applicable to all situations and 
settings and for all players; it is the core that is protected in game theory.1 There are lot of works done in 
experimental games showing that players’ conjectures and beliefs demonstrate some deviation from the 
pre-assumed game theoretic mythology. An experiment was conducted that confirms this.

Experimental design and inconsistent behavior across games 
A real-life experiment was carried out to confirm if human players behave as per the NE strategies.1 A 
total of 180 humans participated in this experiment for two types of games: a trust game and a donation 
game. Each player had $5 at the start. Player 1 chooses how many dollars they want to pass to Player 2. 
The money passed will be increased threefold, meaning Player 2 will receive the tripled amount (plus their 
original $5). Player 2 decides how much they will return to Player 1. This information is available to
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all the players, and their choices are private and anonymous with respect to other players. The subgame 
perfect Nash equilibrium (SPNE) is that either player will pass and return $0 as the dominant strategy 
equilibrium. The assumption is always that each player wants to maximize their payoffs and each player 
believes that the other player will also do the same. That leads to the thought “Player 2 will return $0; I will 
not pass any money to them”. This is the equilibrium strategy assumed in Nash beliefs.

Standard approaches that show deviations from NE strategies assumes players will not follow game 
theoretical expectations. Across both games, inconsistency was observed in the players’ behavior. In a trust 
game, it was observed that 56% of participants as Player 1 sent money ($1.43 on average); as Player 2, they 
returned $1.23 on average. These deviations cast doubts on Nash beliefs. Out of 100 players who received 
money as Player 2, only 62 of them returned on average $2.22. Those 62 who returned money were 
not consistent in sending money. There are 60 players who behaved consistently according to the Nash 
equilibrium in both trust game roles but lacked consistency in the donation game. 

Are beliefs and behavior consistent?
Various reasons from cognitive science force us to doubt the behavior and beliefs of the players across 
different game settings. The human mind is always shifting and changing its way of thinking, which explains 
why players are not consistent in their choices. It is also evident from this experiment that players show 
variance in their choices while playing games. 

The mythology of game theory assumes that players in a game environment have their own preference and 
payoff maximization strategy and know how other players will act and think. In this mythology, we cannot 
chalk out the difference if someone asks the players to select a particular action in the game before making 
predictions or vice versa. The results also suggest that changing the belief and order of choice affects 
players’ beliefs and this change in task does not comply with Nash equilibrium.

Conclusion 
The results showed that players mostly deviate from NE beliefs. The deviations observed are not simple, 
consistent, and easy to explain; they keep on changing as per the environment. This experiment also proved 
that players do not have shared beliefs. Rather, their own beliefs seem to be fit for one game environment 
and can change in another environment. So, it may be misleading to conclude these results are deviations 
from Nash beliefs. Equilibrium concepts are not based on how humans think or make decisions in real life, 
so models that use false assumptions may not create problems when prediction is the only goal (as opposed 
to understanding). 

However, Nash equilibrium models failed to predict real-life behavior, so we should not accept the success 
of these models in prediction scenario due to use of false assumptions. Rather than trying to fit humans in 
an old, developed mythology, we should build models where we can fit humans with their real behavior. No 
model has been developed till now, but research is ongoing.
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Interpreting Machine Learning 
Models Using Shapley Values

Experience Extended

Introduction
Some machine learning models (such as neural networks, gradient boosting, and ensemble methods) are 
called “black-box models” due to their lack of explainability. Though these models have an extremely high 
accuracy, sometimes other models (e.g., linear and logistic regression) are preferred. This is due to their 
understandable variables and clarity in explaining feature interactions through model coefficients, P-values, 
etc.

In such cases, Shapley values can be extremely useful. This is a game theory solution that involves 
distributing both gains and costs fairly to all the players in a coalition. Shapley values are also used in other 
domains, such as attribution modeling in web analytics, economic models, and fair division problems. These 
values help in explaining the feature importance of model by comparing different sets of outputs and 
attributes relative importance to each feature.

How Shapley Values are calculated: 
Shapley values work by calculating an Average Marginal Contribution for a feature in the model. There is a 
Shapley value for an individual feature when there is a set N of n players and a function υ that maps subsets 
of features to the real numbers: υ: 2n → R, υ(Ø) = 0, Where Ø denotes the empty set

1. S is a coalition of all features.

2. υ(S) is the worth of coalition.

3. υ is the Total expected sum of payoffs the features of S can obtain by cooperation.

4. i is the feature notation
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The Tree Shap Method for Explaining Decision Tree Models
Consider the following decision tree with a total of ten random samples: 

X <= 100

Y <= 100

z = 30z = 20 z = 45 z = 60

n1

n6n5 n7n4

n2

TR
U

E FALSE

S =10

S = 6
X <= 175

n3

S = 4

S = 2 S = 3 S = 1S = 4

TR
U

E FALSE

1. X and Y are the independent variables.

2. z is the output variable.

3. n is the node notation.

4. S is the number of samples for the respective node.

Different permutations and combinations of the independent variables X and Y are taken separately to 
calculate the feature importance using Shapley values.

Let’s compute the Shap values for the selected instance (i) X = 130, Y = 65. The Output for this instance is 
45.

The prediction of the null model ϕ0 = (20*4 +30*2 + 45*3 + 60)/10 = 33.5

Consider the Sequence X > Y

1. X is added to the null model first. For the selected instance, the marginal contribution of X is ϕx1 = 45 - 
33.5 = 11.5 (from node n6).

2. Now Y is added to the model. Adding Y does not alter the prediction; hence the marginal contribution of 
Y ϕy1 = 45 – 45 = 0.

3. 

Consider the Sequence Y > X

1. Y is added to the null model first, but the node n1 uses only X and hence the prediction = (6/10) * 
(contribution from child node n2) + (4/10) * (contribution from child node n3).

I. From node n2: n2 has the Y variable; hence the prediction is = 20.

II. From node n3: n3 still does not have the X variable the prediction = (3/4) * (45) + (1/4) * (60) = 
48.75.

III. Total prediction with just Y is (6/10) * (20) + (4/10) * (48.75) = 31.5, and marginal contribution of Y is 
ϕy2 = 31.5 – 33.5 = -2.
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2. Now X is also added to the model, which gives a prediction of 45; the marginal contribution of X is ϕx2 
= 45- 31.5 = 13.5

Final SHAP Values:
ϕx  =( ϕx1 +  ϕx1 )/2 = (11.5 + 13.5)/2 = 12.5

ϕy  =( ϕy1 +  ϕy1 )/2= (0 - 2)/2       = -1

The prediction for the instance i can be explained by  =  ϕ0 + ϕx  + ϕy = 33.5 + 12.5 – 1 = 45, Thus explain-
ing the feature prediction i

Force plot of the above decision tree explained using SHAP values.

Here blue indicates that the Y value decreased the prediction. Red indicates the X value 
increased the prediction.

Summarizing the SHAP method as a tool
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Conclusion:
1. Shapley values are the only attribution method that satisfies efficiency, symmetry, dummy, and additivity.

2. Similar to the above calculations, the same process can be applied for other machine learning algorithms, 
such as deep neural networks, random forest, ensemble methods, etc.

3. The Python package SHAP offers an array of tools to better visualize and understand black box models.

4. Thus, Shapley values provide explainability and interpretability to ML algorithms.
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2. Wikipedia.org: Shapley Value Calculation

SHAP: A Unified Approach to Interpreting Model Predictions. arXiv:1705.07874
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How AI Could Improve 
Equality and Productivity in 

Tax Policies
Food for Thought Experiment

In today’s world, the socio-economic impact of a country’s tax policy is more far-reaching than ever. The key 
objectives of a country’s tax policy are: 

• To ensure an economically stable and consistently improving government body.

• To lessen the wealth inequality in the citizens of the county.

• To have a handle on the economic activity amongst the citizens of the country. 

But, taking a look at the present-day world, we are seeing many countries unable to meet these goals. Sri 
Lanka is looking for funds from the IMF and has borrowed money from individual countries (including India 
and China) in an attempt to maintain a stable environment in the country. With declining forex reserves and 
growth in imports, Nepal is said to be next in line after Sri Lanka. Pakistan is seen by many as soon to be an 
economically failed state. So, based on this, we understand that taxation policies need to proactively ensure 
that we don't end up in the same situation; they need to be fine-tuned for growth and the well-being of both 
individual citizens as well as the government. 

AI for Taxation
With multiple iterations of design improvement and rigorous testing, we can stimulate the outcome of a 
modified taxation policy and its overall long- and short-term impact –thus arriving at the most efficacious 
taxation policy. This falls in line with the AI domain of Reinforcement Learning (RL). RL creates an 
environment or a simulation; in this case, this could be an economic environment similar to that of a country 
with complicated and competitive transactions across varied markets. 

Multiple variations of AI algorithms known as agents try to optimally reach the objective of an equality 
productivity trade-off, with the economic environment rewarding each correct decision and penalizing 
incorrect steps. The agent with the largest improvement in the trade-off score (as compared to the country’s 
existing trade-off score) could then be explored further to gain insights and the same can be driven through 
a feedback loop involving citizens of the country. 

Hence, we have a data-driven, trial-and-error approach that disregards any economic assumptions and 
allows both the reinforcement learning agents and the country’s government to quantify and balance the 
tradeoff between the equality of wealth and citizens’ productivity.

Actors in Reinforcement Learning 
To devise an optimal taxation policy, we have two kinds of players in the RL algorithm:

1. The government, which is referred to as the ‘policy maker’

2. The citizens, who are referred to as the ‘agents’ 
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Economic Environment for an Agent
This is a simulation, similar to the real country, where agents or citizens can move freely, collect assets, and 
build a house. An agent also can perform a transaction involving an exchange of some or all of their collected 
assets at a set price. 

At the onset, each agent is allocated the same amount of initial money for equality. But thereafter – similar 
to a real-world scenario – their earnings might evolve, depending on that agent’s actions and skillset. An 
agent with an expensive skill will have higher earnings. 

Also, while actions like performing a transaction or building a house act as wealth generators, all other 
actions incur a cost. Towards the end of the simulation, all agents are given an award based on their earnings 
and the costs incurred. This award reflects the agent’s ability to utilize the assets they’ve acquired. This 
Constant Relative Risk Aversion (CRRA) function is used to deduce the utility score.[1] It increases with an 
increase in earnings and linearly decreases as per costs incurred. 

Here:

• E_(a,t) denotes the Earnings of an agent a at time t

• C_(a,t) denotes the Earnings of an agent a at time t

• η denotes the degree of linearity and remains constant for all agents in the simulation.

The following figure accurately describes the simulation environment from an agent’s point of view

Source: AI-driven-tax-policy-what-it-would-look-like

https://towardsdatascience.com/ai-driven-tax-policy-what-it-would-look-like-6d73bfee313
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Economic Environment for the Policy Maker
Each simulation must contain more than one tax period (ideally between 5 to 20 periods) to confidently 
interpret the results of multiple iterations of taxation policies on the agents in the experiment. The baseline 
for the initial tax period could be similar to the country’s current taxation policy, wherein each agent must 
pay direct taxes in proportion to their earnings in the tax period. All the tax collected by the policy maker 
is then dispensed to the agents equally. The policy maker’s aim is to deduce the optimal tradeoff between 
equality of wealth and the productivity of the agents in simulations. This optimality can be measured as the 
EP (Equality-Productivity) score.

EP score = Equality * Productivity

Here Equality is derived as a complement of the Gini Index as follows:

The equality score varies between 0 and 1. A complete Equality across the environment amongst all agents 
will give out the score of Equality as 1.

The productivity of a tax period in a simulation can be measured as the summation of all the earnings by all 
the agents in the simulation. 

Where  Earnings_i denotes the earnings of an agent i in tax period t in an environment with N unique agents.

The following figure accurately describes the simulation environment from an agent’s point of view

Source: AI-driven-tax-policy-what-it-would-look-like

https://towardsdatascience.com/ai-driven-tax-policy-what-it-would-look-like-6d73bfee313
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The following figure holistically describes the simulation environment 

Simulation Outcome

To get an adequately reliable result, the simulation must include a substantial number of agents across all 
groups of earning ranges i.e., the lowest-earning range, highest-earning range, lower middle-class earning 
range, and higher middle-class earning range. We do need to note here that this is a very simplistic form 
of simulation with pre-set prices and no scope of tax fraud, change in market conditions, or entry of new 
agents. Such an experiment would have its disadvantages; as an initiation exercise, the results will be 
achieved in a quicker and more adaptable format for the agents. In an experiment run by Stephan Zheng et 
al. [1], it was found that:

1. Reinforcement Learning gave a better Equality - Productive score.

2. It organically deduced a comparatively higher tax for high-earning individuals and a dip in taxes for 
middle-class earners. 

3. The agents were discovered to have comparatively more improvement in overall productivity in their 
skillset.

Conclusion

This study is expected to serve as a foundation for deriving more efficient ways to analyze the impact of 
a policy change. Although these algorithmic results could not mimic the exact society behavior, even in 
its limited form such techniques have great potential to transform policy making from a politically driven 
process to more data-driven, result-seeking one. 

Source: AI-driven-tax-policy-what-it-would-look-like 

https://towardsdatascience.com/ai-driven-tax-policy-what-it-would-look-like-6d73bfee313
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Data Science Competitions/ 
Seminars / Fora / Courses

Competitions:
1.  Multi-Agent Reinforcement Learning for Iterative Reasoning 

The timeline and cash pool has not been announced yet.

2.   HuBMAP + HPA - Hacking the Human Body 

Registration Deadline - September 15th, 2022

Final Submission Deadline - September 22nd, 2022

Prize Money - $60,000

3.    Fossil Demand Forecasting Challenge

Final Submission Deadline - August 28th, 2022

Prize money - $5000

4.    Feedback Prize - Predicting Effective Arguments 

Registration Deadline - May 24, 2022

Final Submission Deadline - August 23, 2022

Prize money - $55,000
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