
Q7 2022© Copyright Absolutdata-Infogain 2022

7

https://www.absolutdata.com/
https://www.absolutdata.com/

Page © Copyright Absolutdata-Infogain 20222

Abhinav Gupta
Program Manager, Digital & Data Sciences (Data Analytics & AI), Absolutdata

Game Theory – Improvise the Play

“Game theory is about exploring of freedom of choices and the equilibrium which comes
from understanding the consequences of freedom.”

–Vineet Raj Kapoor

“Game theory was originally developed by the Hungarian-born American mathematician John von Neumann
and his Princeton University colleague Oskar Morgenstern, a German-born American economist, to solve
problems in economics. In their book The Theory of Games and Economic Behavior (1944), von Neumann
and Morgenstern asserted that the mathematics developed for the physical sciences, which describes
the workings of a disinterested nature, was a poor model for economics. They observed that economics
is much like a game, wherein players anticipate each other’s moves, and therefore requires a new kind of
mathematics, which they called game theory. (The name may be somewhat of a misnomer—game theory
generally does not share the fun or frivolity associated with games.)” – Encyclopedia Britannica[1]

Game theory is a concept with applications far beyond the theoretical. Its unique modus operandi comes
from the fact that it gives an equal opportunity to each one of the players/agents involved in a game/
operation. Players carve out their best strategy to maximize the results/rewards for themselves while
considering their opponents’ tactics; this gives a result that considers the reasonable decision-making of all
those involved and may be the most favorable outcome for all.

Modern-day applications of game theory are spread across a variety of industries and sectors. For example,
take marketing a product. An advanced competitive analysis would strongly recommend considering what
the competition is offering across that product line as a factor in optimizing cost and profit.

Game Theory Components

As depicted below, key considerations in game theory include:

• Consumers/Decision Makers: Within the context of the game, they are the actors or players.

• Rewards: The benefit(s) any player receives from the outcome.

• Results: The outcome derived at the end of all favorable/optimal strategies.

• Strategies: The unique set of actions any player takes within the game (which may be situational).

• Decision & Interdependent: The choices each player can make independently (decisions) and the choices
that are influenced by other players’ actions (interdependent).

Page © Copyright Absolutdata-Infogain 20223

• Nash Equilibrium: The state when “each player is assumed to know the equilibrium strategies of the
other players, and no one has anything to gain by changing only one's own strategy[…] If each player
has chosen a strategy – an action plan based on what has happened so far in the game – and no one
can increase one's own expected payoff by changing one's strategy while the other players keep theirs
unchanged, then the current set of strategy choices constitutes a Nash equilibrium.”[2]

An Example of Game Theory

The most famous example of game theory is the Prisoner’s Dilemma:

Two prisoners must choose between staying silent or confessing to a crime. There are three scenarios:

1. Both prisoners stay silent and go to prison for a year.

2. Either one confesses and the other stays silent; the silent prisoner goes free, while the other gets 20
years in prison.

3. Both confess and each gets 5 years in prison.

The only condition is that the prisoners can’t communicate with each other. Thus, both confess – driven by
fear of being penalized for the other person’s action. The only winner is the jailer, who applied game theory
to amplify his result.

Image: bbc.com

https://www.bbc.com/news/magazine-33254857

Page 4 © Copyright Absolutdata-Infogain 2022

References

1. “Game Theory”, Encyclopedia Britannica, https://www.britannica.com/science/game-theory

2. “Nash Equilibrium”, Wikipedia.org, https://en.wikipedia.org/wiki/Nash_equilibrium

3. “Can game theory explain the Greek debt crisis?”, BBC News,
https://www.bbc.com/news/magazine-33254857

Game Theory Applications in Business

Real-world applications of game theory include predicting the behavior of the various participants in a
scenario where the action of one depends on the action of others. Some common scenarios include:

• Deciding on a product valuation.

• Buying or selling on the stock market.

• Launching a new product.

https://www.britannica.com/science/game-theory
https://en.wikipedia.org/wiki/Nash_equilibrium
https://www.bbc.com/news/magazine-33254857

Page 5 © Copyright Absolutdata-Infogain 2022

Contents

1 Page

Page

Page

Page

Page

Page

Page

Page

06

09

14

18

22

24

28

33

2

3

4

5

6

7

8

Statistictionary

Coder’s Cauldron

Vivid Visualization

Thriving Traction

Folk Wisdom's Fallacy

Experience Extended

Food for Thought Experiment

Data Science Competitions/Seminars/Fora/Courses

Modern Applications of Game Theory

DyPy: Interface to Backward Dynamic Programming

Using Graphs to Illuminate Analytical Problems

Pattern Clustering Using Cooperative Game Theory

The Mythology of Game Theory

Interpreting Machine Learning Models Using Shapley Values

How AI Could Improve Equality and Productivity in Tax Policies

Page © Copyright Absolutdata-Infogain 20226

Modern Applications of
Game Theory

Statistictionary

What Is Game Theory?
It is a branch of applied mathematics that deals with the analysis of situations involving parties (called
players) that make interdependent decisions. The formal origin of game theory can be attributed to
mathematician John von Neumann and economist Oskar Morgenstern. In their book, The Theory of Games
and Economic Behavior (1944), they asserted that game theory is better suited to describe economic
behavior than physical sciences.1 But the seeds for the discipline could be found alongside the emergence
of probability theory back in 1654.2

What Does a Game Theory Problem Look Like?
Just like a game can be described by its characteristics of the number of players (1,2…n players), information
sharing between players (perfect or imperfect), and conflict of interest between players (constant sum or
variable sum), game theory problems and the subsequent approaches can be distinguished by the underlying
parameters.

The following is a classic example of a two-player constant sum game with imperfect information – i.e.
two competing candidates in an election must decide on how to react to a pressing issue to maximize their
vote share. Each candidate can choose to support, oppose, or evade the issue. Depending on what each
candidate chooses, the payoff matrix looks like this:

Candidate 1

Candidate 2

Support Oppose Evade

Support 60% 40% 20% 80% 80% 20%

Oppose 80% 20% 25% 75% 75% 25%

Evade 35% 65% 30% 70% 40% 60%

Table 1: Payoff matrix for two-player constant sum game with imperfect information

The rational decision both players should choose involves maximizing their own vote share against any and
every action of the opponent. This can simply be achieved using either the minimax or maximin approach.

Here is the solution using the minimax approach: For Candidate 2, the minimum vote that can be
achieved for each action is 20% (Support), 25% (Oppose), and 30% (Evade). The maximum of those is 30%
(corresponding to evasion). The rational decision for this candidate would be to evade the issue. Similarly, for
Candidate 1 the rational decision would be to oppose the issue.

Page © Copyright Absolutdata-Infogain 20227

This type of solution is called a saddle-point, where the maximum of the column is the minimum of the
row (or vice-versa). It derives its name from the shape of a saddle and while it may or may not exist in the
game of imperfect information, it always exists in games of perfect information. In the game of perfect
information, payoff at this point is the value of the game.

The Nash Equilibrium
Another aspect that can drastically affect the outcome or the strategies chosen by the players is whether
the game is cooperative or not. Cooperative game theory describes (at a high level) the structure, strategies,
and payoffs of coalitions in cooperative games.4 For non-cooperative games, the Nash equilibrium defines
a strategy profile, a set of strategies (one for each player) so that no player can do better by unilaterally
changing their strategy given that the strategy of other players is fixed.

Formally, let Si be the set of all possible strategies for player i, where i = 1,…,N . Let s* = (s*i ,s*-i)

 be a strategy profile, a set consisting of one strategy for each player, where s*-I denotes the N-1
strategies of all the players except i . Let ui(s*i ,s*-i) be player i's payoff as a function of the strategies. The
strategy profile s* is a Nash equilibrium if

ui(s*i ,s*-i) ≥ ui(si ,s*-i) Ɐ si ϵ Si 5

If the equality doesn’t hold, the strategy profile is known as a strict Nash equilibrium; otherwise, it is termed
a weak Nash equilibrium.

Modern Applications

Game theory is used in conjunction with a variety of other disciplines; the applications depend on the
complexity of the problem. Some of the most notable ones are:

1. Price wars in oligopoly markets.

2. Analyzing and designing political campaigns (as seen in the example in this article).

3. Auction algorithms and analysis. These are extensively used for ad bidding by search engines. This is an
example of algorithmic game theory.

4. Cost-sharing algorithms and analysis. These are commonly used in building inter-community resources.

5. A flights assignment model based on zero-sum sequential game and CDM mechanisms.6

6. Dynamic pricing strategies for demand-side management in smart grids.7

Figure 1: A saddle point 3

Page © Copyright Absolutdata-Infogain 20228

References

1. Encyclopedia Brittanica: Game Theory

2. Apostal, Tom M. Calculus, Volume II “A Short History of Probability”

5. Wikipedia: Nash Equilibrium

3. Example of Saddle Point

6. Liu, Junqiang. Flights Assignment Model of Multiple Airports Based on Game Theory and CDM Mechanism

4. Wikipedia: Cooperative Game Theory

7. Srinivasan, et al. Game-Theory based dynamic pricing strategies for demand side management in smart grids

Authored by
Aishwarya Kukrety,
Analyst at Absolutdata

https://www.britannica.com/science/game-theory
https://homepages.wmich.edu/~mackey/Teaching/145/probHist.html
https://en.wikipedia.org/wiki/Nash_equilibrium
https://www.researchgate.net/figure/Figure-no-5-Example-of-saddle-point-in-error- surface-caused-by-too-big-initial-weights_fig2_336792960
https://www.hindawi.com/journals/mpe/2020/2569280/
https://en.wikipedia.org/wiki/Cooperative_game_theory
https://fardapaper.ir/mohavaha/uploads/2017/09/Game-Theory-based-dynamic-pricing-strategies-for-demand-side.pdf
https://www.linkedin.com/in/aishwarya-kukrety-023893194/

Page © Copyright Absolutdata-Infogain 20229

RDyPy: Interface to Backward
Dynamic Programming

Coder’s Cauldron

DyPy’s goal is to provide an interface to backward dynamic programming that supports the following
priorities (in order): (3

1. Ease of learning and use.

2. Flexibility (can be adapted to new problems).

3. Speed (once the previous goals are met).

Dynamic Program
The Dynamic Program class is the core of DyPy. Each problem you wish to solve will involve creating an
instance of this class and attaching the classes below to it in ways that tell it how to solve your problem.
(3) DyPy should be able to handle problems with numerous state variables, which is a significant design
consideration.

Dynamic Program manages all data and the flow of the optimization. By default, it will build all the stages
and manage their tables, but this part of the process can be customized as well.

Objective Functions
The objective function will do some of the heavy lifting for your dynamic program and must be created
by the user for each specific optimization problem. In each stage of the optimization, DyPy will call the
objective function for each combination of state variables and stage variables; the objective function must
return the cost or benefit value for that set of inputs. The objective function will be provided access to the
Stage object for the stage it is currently evaluating, as well as the values of all the state variables and the
decision variable. These will be provided as keyword arguments to the objective function.[3]

Stage
A stage provides the set of potential states and decisions at each modelled point (sequential moment) in
the dynamic program. Most classes eventually tie to either the Dynamic Program class or the Stage class,
which does most of the heavy lifting and data management in this package. The Dynamic Program class
automatically creates and handles stages by default, but you can alter this behavior for more complex
scenarios. (3)

State Variable
State Variable objects provide options for potential future conditions. A Dynamic Program can involve
multiple state variables – in which case, all permutations of all state variable values are evaluated.

https://nickrsan.github.io/dypy/build/html/conceptual_overview.html#dynamicprogram

Page © Copyright Absolutdata-Infogain 202210

Be careful, because the solution space can quickly grow as you add more state variables with more options.
A State Variable should have a name and a set of potential values. By default, the potential values can be
generated for you if you provide a minimum value, a maximum value, and the discretization size of steps in
between.

Decision Variable
Decision Variables describe potential choices that can be made at each stage. Like State Variable objects,
they have names and values. However, they are managed slightly differently. DyPy currently only supports a
single decision variable; several decision variables might theoretically be included, with increasing complexity
to both code and solution time. Both Decision Variables and State Variables are provided to the objective
function to determine the value of each potential decision when the system is in a certain state. (3)

Prior
Priors are used in DyPy in two ways, each referring data from a previous stage that should be included in the
present stage. This requirement arises both during the backward matrix formulation and the forward path
calculation. The dypy.Prior techniques of applying future stage values to older stages are provided by the
prior class and subclasses. dypy.SimplePrior has a single-variable implementation that may or may not work
for multi-variable issues. To offer a new implementation, this class can be subclassed and the apply method
overridden. The new matrix should be returned by the apply method.[3]

By default, the Prior class to be used should be provided to the Dynamic Program upon creation, but they
can also be overridden per-stage in case of a need to apply priors differently at different stages.

Reducer
Reducers are still to be implemented; they provide a tool for turning multi-state variable problems into single
state variable problems before calculating the best path. One state of a stochastic dynamic program may be
determined by your decisions, while other states are determined by probabilistic future events. Reducers can
help reduce the probabilistic states so that a single state variable reflecting the needs of the decision can be
used for the forward optimal path calculation.

Use of reducers is not required, and those with need for a true stochastic dynamic program may wish to
implement branching behavior reflecting the uncertainty in future stages. The Stage and Prior classes would
then need to be overridden to provide such behavior in lieu of using reducers.

Programming Effort
You’re a programmer working hard to triage bugs in your software before a big release coming up. In your
bug tracker, bugs are split into 5 categories: “Core”, “UX/UI”, “Network”, “Database”, and “API”. The release is
in 12 days, but your team manager wants to make sure to get some fixes in each. They ask you to spend no
more than 5 days on any single area and at least one day on each, but other than that, they just want you to
fix the most bugs possible.

Considering the prioritization of tickets in the tracker, you estimate the number of bugs you fix in each
category as a function of time as follows:

Page © Copyright Absolutdata-Infogain 202211

Code

we have 12 days available to us for work

state_variable = dypy.StateVariable("Days Available for Category", values=range(1, 13))

but we can only spend between 1 and 5 days working on a single category

decision_variable = dypy.DecisionVariable("Time on Category", options=decision_options)

def objective_function(stage, days_available_for_category, time_on_category):

 """

 When the objective is called, the solver makes the stage, state variables,

 and decision variable available to it. The keyword argument names here

 match the names of the state variables and decision variables (which will be

 passed as keyword arguments; the order isn't important, but the name is). The name

 is automatically derived by lowercasing the name of the variable and replacing

 spaces with underscores. It will remove digits from the front if they are present

 so that the name is a valid python identifier

 In this example, we can think of these variables as providing:

 1. stage - this will give access to the DyPy.stage object

 2. state - this just provides access to the state value being assessed, not the object

 3. decision - this just provides access to the decision value being assessed, not the object

 """

 # we are given benefits, so defining here - each category is a row, each column is a

 # number of days, and the value is how much benefit we get from working on that category

 # for that long

 benefit_list = [

 # column 0 means no time spent on it, so we get no benefit

 [0, 2, 5, 7, 8, 10],

 [0, 3, 6, 8, 9, 9],

 [0, 1, 2, 4, 7, 9],

Bugs closed by days of effort in each area

Category 1 Day 2 Days 3 Days 4 Days 5 Days

Core 2 5 7 8 10

UI/UX 3 6 8 9 9

Network 1 2 4 7 9

Database 2 3 6 8 11

API 4 6 8 9 10

Page © Copyright Absolutdata-Infogain 202212

 [0, 2, 3, 6, 8, 11],

 [0, 4, 6, 8, 9, 10],

]

can't spend more time than we have available

 if time_on_category > days_available_for_category:

so exclude these options - sets to high positive or negative value

 return stage.parent_dp.exclusion_value

 else:

 return benefit_list[stage.number][time_on_category]

define the dynamic program and tell it we have four timesteps

dynamic_program = dypy.DynamicProgram(timestep_size=1, time_horizon=5,

objective_function=objective_function, calculation_function=dypy.MAXIMIZE,

prior=dypy.SimplePrior)

dynamic_program.decision_variable = decision_variable

dynamic_program.add_state_variable(state_variable)

each category will be a stage, in effect - tell it to create all five stages as empty

assigns names by default, but we can override them

dynamic_program.build_stages(name_prefix="Category")

make a list of names in the same order they're used in our objective function

stage_names = ["Core", "UI/UX", "Network", "Database", "API"]

and use it to set the value of .name for each stage

for i, stage in enumerate(dynamic_program.stages):

dynamic_program.stages[i].name = stage_names[i]

run the dynamic program - results are logged to python logger `dypy` and decisions are set on each stage
as .decision_amount

dynamic_program.run()

Page © Copyright Absolutdata-Infogain 202213

References

1. FavTutor.com: Dynamic Programming (With Python Problems)

2. DyPy Core Concepts and Classes

3. DyPy Documentation

For references and new developments in deep reinforcement learning please check out the links below:

Authored by
Tariq Khosla,
Analyst at Absolutdata

https://favtutor.com/blogs/dynamic-programming
https://nickrsan.github.io/dypy/build/html/conceptual_overview.html
https://dypy.readthedocs.io/en/latest/
https://www.linkedin.com/in/tariqkhosla29/

Page © Copyright Absolutdata-Infogain 202214

Using Graphs to Illuminate
Analytical Problems

Vivid Visualization

Visualization has proven to be key in data science. Data visualization methods vary from simple Excel graphs
to network diagrams with customized visuals. These networks help us to understand everything from social
media to real-world applications.

Network Visualization helps us understand the semantics of macro patterns through the use of micro
patterns. It symbolizes one possible reality, not the sum of all possible realities. Scientific visualization
enhances the questions arising from the data, and the truth of the data is enhanced by the visualization. In
turn, this leads us and others to enquire about the data.

Envisioning data through possible filters to reduce its dimensionality can be implemented through
unsupervised algorithms, such as clustering algorithms, grouping the nodes by means of similarity, or page
ranks that, based on node sizes, signify a single data can have multiple visualization facets. To visualize the
link dataset, visualization packages like the open-source Gephi can be used. The size and density of the
graph signifies that it shrinks to the specific subset; edge count reduces the graph to significant edges. Node
positioning is implemented by the Open Ord layout algorithm and colored by Blondel et al’s modularity, with
coloration selected by Gephi

Source: Network Visualization

Source:Graph

https://imageio.forbes.com/specials-images/dam/imageserve/955572446/960x0.jpg?format=jpg&width=960
https://imageio.forbes.com/blogs-images/kalevleetaru/files/2019/02/2019-GDELT-GKG-2016-2018-Outlink-Graph-Random10KAll-2K-W-1200x1200.jpg?format=jpg&width=960

Page © Copyright Absolutdata-Infogain 202215

The Open Ord algorithm utilizes random seed methodologies, each time giving different results. This
algorithm results in differences in visualizations on consecutive runs, moving out to one of the best
visualizations. It helps to separate the cluster of greatest importance. Changing the background color creates
clear separation of the nodes and makes a sharper contrast between the clusters, heightening the impact.
Color selection can also change how the user perceives the graph.

Changing the thickness of the network lines changes the view from micro structure to macro structure.
Adjusting the thickness of each edge based on edge strength makes the central core less prominent and
emphasizes the isolated nature of small clusters around the boundary.

Graphs are often displayed as edge visualizations, where nodes indicate the focal point of the image.
Algorithmic and methodological decisions have a major impact on visual representations.

Source: Network

Source: Graph

https://imageio.forbes.com/blogs-images/kalevleetaru/files/2019/02/2019-GDELT-GKG-2016-2018-Outlink-Graph-Random10KAll-2K-1200x1200.jpg?format=jpg&width=960
https://imageio.forbes.com/blogs-images/kalevleetaru/files/2019/02/2019-GDELT-GKG-2016-2018-Outlink-Graph-Random10KAll-2K-1200x1200.jpg?format=jpg&width=960

Page © Copyright Absolutdata-Infogain 202216

Source : what-makes-a-good-data-visualization

Figure 1: Different Types of Visuals

Best Practices for Data Visualization
The overall best practice is to use data visualization to get to the truth of the data.

• The first key is to address the audience and design the visualization according to the audience’s needs,
level of understanding, etc. This helps the user to use the data to make business decisions.

• The second key is to understand what each visual signifies and then to choose a visual that is understood
by the user. Different types of visuals include line charts, histograms, heat maps, scatter plots, and pie
charts (among many others).

https://www.informationisbeautiful.net/visualizations/what-makes-a-good-data-visualization/
https://www.analyticsvidhya.com/blog/2021/08/effective-data-visualization-techniques-in-data-science-using-python/

Page © Copyright Absolutdata-Infogain 202217

References

1. Kalev Leetaru / Forbes.com: Why Data Visualization Is Equal Parts Data Art and Data Science

2. Navdeep Singh Gill / XenonStack.com: Interactive Data Visualization Techniques and Tools –A Quick Guide

Authored by
Sachin Kumar Yadav,
Analyst at Absolutdata

• Text clarifying the meaning of the visualization should be applied carefully and with due thought.

• Multiple visualization runs should be used; out of these visualizations, the best should be tuned to
applications.

• To create the visualization, correct visualization tools must be applied. Top data visualization tools
include Tableau, PowerBI, and others.

• The visualization should be enhanced by thoughtful use of color.

• Attractive and intuitive dashboards can also be used to enhance data visualizations.

• Visualization should involve the user.

• Visualization should present meaningful business insights.

Source: Data Visualization Tools

https://www.forbes.com/sites/kalevleetaru/2019/02/24/why-data-visualization-is-equal-parts-data-art-and-data-science/?sh=ddc37de6dec7
https://www.xenonstack.com/insights/data-visualization
https://www.linkedin.com/in/sachin-kumar-y-a65a23143/
https://www.xenonstack.com/blog/top-data-visualization-tools

Page © Copyright Absolutdata-Infogain 202218

Pattern Clustering Using
Cooperative Game Theory

Thriving Traction

Clustering is grouping a set of objects based on some common characteristics. Clustering has applications
in many fields, including data analysis, pattern recognition, image analysis, data compression, computer
graphics, and machine learning.[1] Clustering has also been used to solve large-scale problems. Determining
the number of output clusters k is challenging. In this case, using cooperative game theory provides a new
way of addressing this problem by using a variety of solution concepts.[3]

Cooperative Game theory (CGT) is a model of game theory where the players (also known as coalitions) use
cooperative behavior in competition. It is also referred to as a coalitional game.[2] The coalition behavior of
the players is monitored by external agencies under regulatory authority. [2]

Game-Theoretic Solution Concepts for the Clustering Problem
Specifying value for each coalition gives a cooperative game. The cooperative game has a finite set of
players N (also known as the grand coalition) and a characteristic function ν: 2N → R. It defines the value
ν(S) of any coalition where S ⊆ N. The function describes how much collective payoff can be gained by a set
of players by forming a coalition; the game is also known as value or profit game.[1]

The formation of the grand coalition N is the main assumption in cooperative game theory. The challenge
now is fairly allocating the payoff v(N) among the players. This assumption is not restrictive; even if players
split off and form smaller coalitions, we apply solution concepts to the subgames defined by whatever
coalitions are formed.[4]

Let’s explore the solution concepts to utilize their properties for the clustering game. A Shapley value is
based on average fairness and stability, while Nucleolus is based on both min-max fairness and stability. Of
these solution concepts, Nucleolus properties are the most suitable for the clustering game.[3] Nucleolus
comes with its drawbacks, most notably that it is computationally expensive. We can use other solution
concepts for computational ease. These are mentioned below:

A. The Core

When the set of attainable allocations cannot be improved further by a coalition (a subset) of the economy's
agents, it is called the Core. An allocation is said to have the Core property if there is no coalition that can be
improved.[5]

 Let (N, ν) be a coalitional game with transferable utility (say, TU). Let x = 〖(x〖_1,…,x_n) where x_i is the
payoff of player i. Then, the Core consists of all payoff allocations, that satisfy the following properties:

1. individual rationality, i.e., ≥ ν({i}) ∀ i ∈ N

2. collective rationality i.e.,

3. coalitional rationality i.e.,

A payoff allocation that satisfies individual rationality and collective rationality is called an imputation.

Page © Copyright Absolutdata-Infogain 202219

B. The Nucleolus

The allocation that minimizes the dissatisfaction of the players from the allocation they can receive in a
game is the Nucleolus.[3] For every x, consider the excess defined by

C. The Shapley Value

The Shapley value is the unique payoff vector that satisfies monotonicity, efficient and symmetric.[4] To each
cooperative game, it assigns a unique distribution of a total surplus generated by the coalition of all players.[6]

If it follows the fairness-based axioms already discussed, then any imputation φ = 〖(φ〗_1, ..., φ_n) is a Shapley
value. For any general coalitional game with transferable utility (N, ν), the Shapley value of player i is given by

Clustering Based on Cooperative Game Theory
Let’s assign maximum Shapley value for each cluster as cluster center. If the center has a high density
surrounding, we will consider other close points to be center; else it will consider more far away points.

Algorithm: DRAC (Density-Restricted Agglomerative Clustering) [3]

Require: Dataset, the maximum threshold for similarity δ ∈ [0, 1], and threshold for Shapley value multiplicity
γ ∈ [0, 1] [3]

1. Start with checking pairwise similarities between all points in the dataset.

2. Compute the Shapley value for each point i.

3. Arrange the points in decreasing order of their Shapley values. Let g_M be the global maximum of
Shapley values. Start a new queue, it’ll be our expansion queue

e_s(x) is a measure of the unhappiness of S with x. The goal of Nucleolus is to minimize the most unhappy
coalition, i.e., the largest of the e_s(x). This could also be written in linear programming problem formulation
as min Z, subject to

It combines several fairness criteria with stability. It is the central imputation, and thus in the min-max sense it
is fair and optimum. If the Core is non-empty, the Nucleolus is in the Core.[4]

Π = set of all permutations on N.

 x_i^π = contribution of player i to permutation π.

Page © Copyright Absolutdata-Infogain 202220

4. Next, start a new cluster. Of all the unallocated points, choose the point with the maximum Shapley
value as the new cluster center. Let l_M be its Shapley value. Mark those points as allocated. Add it to
the expansion queue.

5. Set β = δ q √(l_M/g_M)

6. For each unallocated point where the similarity of that point to the first point in the expansion queue
is at least β, add it to the current cluster and mark it as allocated. If the Shapley value of that point is at
least γ-multiple of l_M, add it to the expansion queue.

7. Remove the first point from the expansion queue.

8. If the expansion queue is not empty, go to step 6.

9. If the cluster center is the only point in its cluster, mark it as noise.

10. If all points are allocated a cluster, terminate.

Results
Let’s compare our algorithm with some existing algorithms. SHARPC (security- and heterogeneity-driven
scheduling algorithm) proposes a novel approach to finding the cluster centers and giving a good start
to K-means using a game theoretic solution concept; the Shapley value which thus results in the desired
clustering. The limitation of this approach is that it is restricted to K-means; this is not always desirable,
especially when the classes have unequal variances or when they lack convexity.[3]

SHARPC cannot detect clusters that are not convex. If the threshold is increased to solve merging of
different clusters (the light blue clusters in Fig 1), more clusters are formed and the larger clusters get
subdivided into several small clusters.

The DRAC cluster (the light blue clusters in Fig 2) is highly dense; its cluster center has very high Shapley
value. This results in a very high value of β, the similarity threshold. The red and light blue clusters are
distinct. The red cluster is a low-density cluster (owing to the low Shapley value of the cluster center). It has
a low β value, the similarity threshold, thus allowing more faraway points to be a part of the cluster.

Fig 1: Clusters as discovered by SHARPC

Image credits: Pattern Clustering using Cooperative Game theory

Fig 2: Clusters as discovered by DRAC

https://www.researchgate.net/publication/51969290_Pattern_Clustering_using_Cooperative_Game_Theory

Page © Copyright Absolutdata-Infogain 202221

References

[1] Wikipedia.org: Cluster Analysis

[2] eFinanceManagement: Cooperative Game Theory | Transferable utility, Example

[3] Swapnil Dhamal, et al.: Pattern Clustering using Cooperative Game theory

[4] Wikipedia.org: Cooperative Game Theory

[5] Wikipedia.org: Core (game theory)

[6] Wikipedia.org: Shapley value

Authored by
Kajol Sah,
Consultant at Absolutdata

https://arxiv.org/abs/1807.01675
https://en.wikipedia.org/wiki/Cluster_analysis
https://www.geeksforgeeks.org/q-learning-in-python/
https://efinancemanagement.com/financial-management/cooperative-game-theory
https://bitnodes.io/nodes/live-map/
https://www.researchgate.net/publication/51969290_Pattern_Clustering_using_Cooperative_Game_Theory
https://bitnodes.io/nodes/live-map/
https://en.wikipedia.org/wiki/Cooperative_game_theory
https://bitnodes.io/nodes/live-map/
https://en.wikipedia.org/wiki/Core_(game_theory)
https://bitnodes.io/nodes/live-map/
https://en.wikipedia.org/wiki/Shapley_value
https://www.linkedin.com/in/kajol-sah-76812b168/

Page © Copyright Absolutdata-Infogain 202222

The Mythology of
Game Theory

Folk-Wisdom’s Fallacy

The Mythology of Non-Cooperative Games
Non-cooperative games study the conflict situations among players – i.e., it is the study of situations where
the payoffs don’t simply depend on the player’s own action, but also on the action of another player. Game
theory assumes players are rational; each player will always act to maximize their payoff given their beliefs
about how other players will play.

It can be concluded that game theory is a cognitive science; thus, it has its own assumptions that players are
aware of all the actions which are available to them. One of the salient features of game theory is that one
can always design different payoffs, settings, number of players, and actions and information available to
each player. These differences lead to different strategies, equilibria, and outcomes.1

Research has shown that a player’s real-life behavior does not align with the predictions derived from game
theory. The differences in real-life behavior and traditional assumptions of game theory can be attributed to:

• The cognitive biases of individual players while making decisions.

• A mismatch in game payoffs to players’ expected payoffs.

• A player’s limitations in thinking about other players’ strategy and behavior.

Dysfunction with Nash Equilibria
We all are human beings, so our approach to solving problems can be cognitively very different from
each other. We have flexibility in our approaches, and these choices sometimes do not comply with
Nash equilibrium strategies. It is not always a dysfunction; people make their choice according to their
conjectures, so it is important to correct the assumptions of Nash equilibria as the use of game theory
increases in various decisioning domains. According to one analysis:

“[The] Nash equilibrium (NE) concept entails the assumption that all players think in a very similar
manner when assessing one another strategies. In a NE, all players in a game base their strategies not
only on knowledge of the game’s structure but also on identical conjectures about what all other players
will do.”2

The mythology of game theory is that these identical conjectures are applicable to all situations and
settings and for all players; it is the core that is protected in game theory.1 There are lot of works done in
experimental games showing that players’ conjectures and beliefs demonstrate some deviation from the
pre-assumed game theoretic mythology. An experiment was conducted that confirms this.

Experimental design and inconsistent behavior across games
A real-life experiment was carried out to confirm if human players behave as per the NE strategies.1 A
total of 180 humans participated in this experiment for two types of games: a trust game and a donation
game. Each player had $5 at the start. Player 1 chooses how many dollars they want to pass to Player 2.
The money passed will be increased threefold, meaning Player 2 will receive the tripled amount (plus their
original $5). Player 2 decides how much they will return to Player 1. This information is available to

Page © Copyright Absolutdata-Infogain 202223

all the players, and their choices are private and anonymous with respect to other players. The subgame
perfect Nash equilibrium (SPNE) is that either player will pass and return $0 as the dominant strategy
equilibrium. The assumption is always that each player wants to maximize their payoffs and each player
believes that the other player will also do the same. That leads to the thought “Player 2 will return $0; I will
not pass any money to them”. This is the equilibrium strategy assumed in Nash beliefs.

Standard approaches that show deviations from NE strategies assumes players will not follow game
theoretical expectations. Across both games, inconsistency was observed in the players’ behavior. In a trust
game, it was observed that 56% of participants as Player 1 sent money ($1.43 on average); as Player 2, they
returned $1.23 on average. These deviations cast doubts on Nash beliefs. Out of 100 players who received
money as Player 2, only 62 of them returned on average $2.22. Those 62 who returned money were
not consistent in sending money. There are 60 players who behaved consistently according to the Nash
equilibrium in both trust game roles but lacked consistency in the donation game.

Are beliefs and behavior consistent?
Various reasons from cognitive science force us to doubt the behavior and beliefs of the players across
different game settings. The human mind is always shifting and changing its way of thinking, which explains
why players are not consistent in their choices. It is also evident from this experiment that players show
variance in their choices while playing games.

The mythology of game theory assumes that players in a game environment have their own preference and
payoff maximization strategy and know how other players will act and think. In this mythology, we cannot
chalk out the difference if someone asks the players to select a particular action in the game before making
predictions or vice versa. The results also suggest that changing the belief and order of choice affects
players’ beliefs and this change in task does not comply with Nash equilibrium.

Conclusion
The results showed that players mostly deviate from NE beliefs. The deviations observed are not simple,
consistent, and easy to explain; they keep on changing as per the environment. This experiment also proved
that players do not have shared beliefs. Rather, their own beliefs seem to be fit for one game environment
and can change in another environment. So, it may be misleading to conclude these results are deviations
from Nash beliefs. Equilibrium concepts are not based on how humans think or make decisions in real life,
so models that use false assumptions may not create problems when prediction is the only goal (as opposed
to understanding).

However, Nash equilibrium models failed to predict real-life behavior, so we should not accept the success
of these models in prediction scenario due to use of false assumptions. Rather than trying to fit humans in
an old, developed mythology, we should build models where we can fit humans with their real behavior. No
model has been developed till now, but research is ongoing.

References

McCubbins, Mathew D., Mark Turner, and Nicholas Weller. “The Mythology of Game Theory” in Proceedings of
the International Conference on Social Computing, Behavioral-Cultural Modeling & Prediction 1-8. (2012)

Lupia, A., A. S. Levine, and N. Zharinova. “Should Political Scientists Use the Self Confirming Equilibrium Con-
cept? Benefits, Costs, and an Application to the Jury Theorem.” Political Analysis 18:103-123. (2010)

Authored by
Akash Omer,
Senior Consultant AI/ML at Absolutdata

https://www.linkedin.com/in/akashomer/
https://link.springer.com/chapter/10.1007/978-3-642-29047-3_4
https://www.cambridge.org/core/journals/political-analysis/article/abs/when-should-political-scientists-use-the-selfconfirming-equilibrium-concept-benefits-costs-and-an-application-to-jury-theorems/0D6FB6380D1596F05B0EC7164CFF9C27

Page © Copyright Absolutdata-Infogain 202224

Interpreting Machine Learning
Models Using Shapley Values

Experience Extended

Introduction
Some machine learning models (such as neural networks, gradient boosting, and ensemble methods) are
called “black-box models” due to their lack of explainability. Though these models have an extremely high
accuracy, sometimes other models (e.g., linear and logistic regression) are preferred. This is due to their
understandable variables and clarity in explaining feature interactions through model coefficients, P-values,
etc.

In such cases, Shapley values can be extremely useful. This is a game theory solution that involves
distributing both gains and costs fairly to all the players in a coalition. Shapley values are also used in other
domains, such as attribution modeling in web analytics, economic models, and fair division problems. These
values help in explaining the feature importance of model by comparing different sets of outputs and
attributes relative importance to each feature.

How Shapley Values are calculated:
Shapley values work by calculating an Average Marginal Contribution for a feature in the model. There is a
Shapley value for an individual feature when there is a set N of n players and a function υ that maps subsets
of features to the real numbers: υ: 2n → R, υ(Ø) = 0, Where Ø denotes the empty set

1. S is a coalition of all features.

2. υ(S) is the worth of coalition.

3. υ is the Total expected sum of payoffs the features of S can obtain by cooperation.

4. i is the feature notation

Page © Copyright Absolutdata-Infogain 202225

The Tree Shap Method for Explaining Decision Tree Models
Consider the following decision tree with a total of ten random samples:

X <= 100

Y <= 100

z = 30z = 20 z = 45 z = 60

n1

n6n5 n7n4

n2

TR
U

E FALSE

S =10

S = 6
X <= 175

n3

S = 4

S = 2 S = 3 S = 1S = 4

TR
U

E FALSE

1. X and Y are the independent variables.

2. z is the output variable.

3. n is the node notation.

4. S is the number of samples for the respective node.

Different permutations and combinations of the independent variables X and Y are taken separately to
calculate the feature importance using Shapley values.

Let’s compute the Shap values for the selected instance (i) X = 130, Y = 65. The Output for this instance is
45.

The prediction of the null model ϕ0 = (20*4 +30*2 + 45*3 + 60)/10 = 33.5

Consider the Sequence X > Y

1. X is added to the null model first. For the selected instance, the marginal contribution of X is ϕx1 = 45 -
33.5 = 11.5 (from node n6).

2. Now Y is added to the model. Adding Y does not alter the prediction; hence the marginal contribution of
Y ϕy1 = 45 – 45 = 0.

3.

Consider the Sequence Y > X

1. Y is added to the null model first, but the node n1 uses only X and hence the prediction = (6/10) *
(contribution from child node n2) + (4/10) * (contribution from child node n3).

I. From node n2: n2 has the Y variable; hence the prediction is = 20.

II. From node n3: n3 still does not have the X variable the prediction = (3/4) * (45) + (1/4) * (60) =
48.75.

III. Total prediction with just Y is (6/10) * (20) + (4/10) * (48.75) = 31.5, and marginal contribution of Y is
ϕy2 = 31.5 – 33.5 = -2.

Page © Copyright Absolutdata-Infogain 202226

2. Now X is also added to the model, which gives a prediction of 45; the marginal contribution of X is ϕx2
= 45- 31.5 = 13.5

Final SHAP Values:
ϕx =(ϕx1 + ϕx1)/2 = (11.5 + 13.5)/2 = 12.5

ϕy =(ϕy1 + ϕy1)/2= (0 - 2)/2 = -1

The prediction for the instance i can be explained by = ϕ0 + ϕx + ϕy = 33.5 + 12.5 – 1 = 45, Thus explain-
ing the feature prediction i

Force plot of the above decision tree explained using SHAP values.

Here blue indicates that the Y value decreased the prediction. Red indicates the X value
increased the prediction.

Summarizing the SHAP method as a tool

Page © Copyright Absolutdata-Infogain 202227

References

Conclusion:
1. Shapley values are the only attribution method that satisfies efficiency, symmetry, dummy, and additivity.

2. Similar to the above calculations, the same process can be applied for other machine learning algorithms,
such as deep neural networks, random forest, ensemble methods, etc.

3. The Python package SHAP offers an array of tools to better visualize and understand black box models.

4. Thus, Shapley values provide explainability and interpretability to ML algorithms.

1. Investopedia.com: Shapley Value Definition

2. Wikipedia.org: Shapley Value Calculation

SHAP: A Unified Approach to Interpreting Model Predictions. arXiv:1705.07874

SHAP Documentation

Authored by
Vishnu Prasath,
Consultant at Absolutdata

https://www.investopedia.com/terms/s/shapley-value.asp#:~:text=Understanding%20Shapley%20Values&text=Essentially%2C%20the%20Shapley%20value%20is,or%20less%20than%20the%20others.
https://en.wikipedia.org/wiki/Shapley_value
https://arxiv.org/abs/1705.07874
http://SHAP Documentation
https://www.linkedin.com/in/vishnu-prasath/

Page © Copyright Absolutdata-Infogain 202228

How AI Could Improve
Equality and Productivity in

Tax Policies
Food for Thought Experiment

In today’s world, the socio-economic impact of a country’s tax policy is more far-reaching than ever. The key
objectives of a country’s tax policy are:

• To ensure an economically stable and consistently improving government body.

• To lessen the wealth inequality in the citizens of the county.

• To have a handle on the economic activity amongst the citizens of the country.

But, taking a look at the present-day world, we are seeing many countries unable to meet these goals. Sri
Lanka is looking for funds from the IMF and has borrowed money from individual countries (including India
and China) in an attempt to maintain a stable environment in the country. With declining forex reserves and
growth in imports, Nepal is said to be next in line after Sri Lanka. Pakistan is seen by many as soon to be an
economically failed state. So, based on this, we understand that taxation policies need to proactively ensure
that we don't end up in the same situation; they need to be fine-tuned for growth and the well-being of both
individual citizens as well as the government.

AI for Taxation
With multiple iterations of design improvement and rigorous testing, we can stimulate the outcome of a
modified taxation policy and its overall long- and short-term impact –thus arriving at the most efficacious
taxation policy. This falls in line with the AI domain of Reinforcement Learning (RL). RL creates an
environment or a simulation; in this case, this could be an economic environment similar to that of a country
with complicated and competitive transactions across varied markets.

Multiple variations of AI algorithms known as agents try to optimally reach the objective of an equality
productivity trade-off, with the economic environment rewarding each correct decision and penalizing
incorrect steps. The agent with the largest improvement in the trade-off score (as compared to the country’s
existing trade-off score) could then be explored further to gain insights and the same can be driven through
a feedback loop involving citizens of the country.

Hence, we have a data-driven, trial-and-error approach that disregards any economic assumptions and
allows both the reinforcement learning agents and the country’s government to quantify and balance the
tradeoff between the equality of wealth and citizens’ productivity.

Actors in Reinforcement Learning
To devise an optimal taxation policy, we have two kinds of players in the RL algorithm:

1. The government, which is referred to as the ‘policy maker’

2. The citizens, who are referred to as the ‘agents’

Page © Copyright Absolutdata-Infogain 202229

Economic Environment for an Agent
This is a simulation, similar to the real country, where agents or citizens can move freely, collect assets, and
build a house. An agent also can perform a transaction involving an exchange of some or all of their collected
assets at a set price.

At the onset, each agent is allocated the same amount of initial money for equality. But thereafter – similar
to a real-world scenario – their earnings might evolve, depending on that agent’s actions and skillset. An
agent with an expensive skill will have higher earnings.

Also, while actions like performing a transaction or building a house act as wealth generators, all other
actions incur a cost. Towards the end of the simulation, all agents are given an award based on their earnings
and the costs incurred. This award reflects the agent’s ability to utilize the assets they’ve acquired. This
Constant Relative Risk Aversion (CRRA) function is used to deduce the utility score.[1] It increases with an
increase in earnings and linearly decreases as per costs incurred.

Here:

• E_(a,t) denotes the Earnings of an agent a at time t

• C_(a,t) denotes the Earnings of an agent a at time t

• η denotes the degree of linearity and remains constant for all agents in the simulation.

The following figure accurately describes the simulation environment from an agent’s point of view

Source: AI-driven-tax-policy-what-it-would-look-like

https://towardsdatascience.com/ai-driven-tax-policy-what-it-would-look-like-6d73bfee313

Page © Copyright Absolutdata-Infogain 202230

Economic Environment for the Policy Maker
Each simulation must contain more than one tax period (ideally between 5 to 20 periods) to confidently
interpret the results of multiple iterations of taxation policies on the agents in the experiment. The baseline
for the initial tax period could be similar to the country’s current taxation policy, wherein each agent must
pay direct taxes in proportion to their earnings in the tax period. All the tax collected by the policy maker
is then dispensed to the agents equally. The policy maker’s aim is to deduce the optimal tradeoff between
equality of wealth and the productivity of the agents in simulations. This optimality can be measured as the
EP (Equality-Productivity) score.

EP score = Equality * Productivity

Here Equality is derived as a complement of the Gini Index as follows:

The equality score varies between 0 and 1. A complete Equality across the environment amongst all agents
will give out the score of Equality as 1.

The productivity of a tax period in a simulation can be measured as the summation of all the earnings by all
the agents in the simulation.

Where Earnings_i denotes the earnings of an agent i in tax period t in an environment with N unique agents.

The following figure accurately describes the simulation environment from an agent’s point of view

Source: AI-driven-tax-policy-what-it-would-look-like

https://towardsdatascience.com/ai-driven-tax-policy-what-it-would-look-like-6d73bfee313

Page © Copyright Absolutdata-Infogain 202231

The following figure holistically describes the simulation environment

Simulation Outcome

To get an adequately reliable result, the simulation must include a substantial number of agents across all
groups of earning ranges i.e., the lowest-earning range, highest-earning range, lower middle-class earning
range, and higher middle-class earning range. We do need to note here that this is a very simplistic form
of simulation with pre-set prices and no scope of tax fraud, change in market conditions, or entry of new
agents. Such an experiment would have its disadvantages; as an initiation exercise, the results will be
achieved in a quicker and more adaptable format for the agents. In an experiment run by Stephan Zheng et
al. [1], it was found that:

1. Reinforcement Learning gave a better Equality - Productive score.

2. It organically deduced a comparatively higher tax for high-earning individuals and a dip in taxes for
middle-class earners.

3. The agents were discovered to have comparatively more improvement in overall productivity in their
skillset.

Conclusion

This study is expected to serve as a foundation for deriving more efficient ways to analyze the impact of
a policy change. Although these algorithmic results could not mimic the exact society behavior, even in
its limited form such techniques have great potential to transform policy making from a politically driven
process to more data-driven, result-seeking one.

Source: AI-driven-tax-policy-what-it-would-look-like

https://towardsdatascience.com/ai-driven-tax-policy-what-it-would-look-like-6d73bfee313

Page © Copyright Absolutdata-Infogain 202232

References

1. The AI Economist: Improving Equality and Productivity with AI-Driven Tax Policies

2. AI-driven-tax-policy-what-it-would-look-like

5. Viking Village - app on Google store

3. The Three Goals of Taxation

6. Nepal's economic crisis

4. Why Sri-Lanka is facing unprecedented economic-crisis

7. Pakistan in grip of intense and deep economic crisis

8. Using elasticity to derive optimal tax rate

9. The AI Economist

Authored by
Sidharth Suman,
Senior Consultant at Absolutdata

https://arxiv.org/pdf/2004.13332v1.pdf
https://towardsdatascience.com/ai-driven-tax-policy-what-it-would-look-like-6d73bfee313
https://play.google.com/store/apps/details?id=com.limitlessfun.vikingvillage.free
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=796776
https://www.orfonline.org/expert-speak/nepals-economic-crisis/
https://www.thenewsminute.com/article/explained-why-sri-lanka-facing-unprecedented-economic-crisis-162487
https://arynews.tv/aryblog-pakistan-in-grip-of-intense-and-deep-economic-crisis/
https://eml.berkeley.edu/~saez/derive.pdf
https://www.youtube.com/watch?v=4iQUcGyQhdA
https://www.linkedin.com/in/sidharthsuman/

Page © Copyright Absolutdata-Infogain 202233

Data Science Competitions/
Seminars / Fora / Courses

Competitions:
1. Multi-Agent Reinforcement Learning for Iterative Reasoning

The timeline and cash pool has not been announced yet.

2. HuBMAP + HPA - Hacking the Human Body

Registration Deadline - September 15th, 2022

Final Submission Deadline - September 22nd, 2022

Prize Money - $60,000

3. Fossil Demand Forecasting Challenge

Final Submission Deadline - August 28th, 2022

Prize money - $5000

4. Feedback Prize - Predicting Effective Arguments

Registration Deadline - May 24, 2022

Final Submission Deadline - August 23, 2022

Prize money - $55,000

Authored by
Ishan Dhall,
Analyst at Absolutdata

https://www.aicrowd.com/challenges/multi-agent-reinforcement-learning-for-iterative-reasoning
https://signal6domain.online/click?redirect=https%3A%2F%2Fwww.aicrowd.com%2Fchallenges%2Fmulti-agent-reinforcement-learning-for-iterative-reasoning&dID=1652337439735&linkName=Multi-Agent%20Reinforcement%20Learning%20for%20Iterative%20Reasoning
https://www.kaggle.com/competitions/hubmap-organ-segmentation
https://deepmind.com/learning-resources/reinforcement-learning-lectures-series-2018
https://zindi.africa/competitions/fossil-stock-forecasting-challenge?utm_source=mailchimp&utm_medium=post&utm_campaign=mlplatformexp&utm_id=mlcontest
https://deepmind.com/learning-resources/reinforcement-learning-lectures-series-2018
https://www.kaggle.com/competitions/feedback-prize-effectiveness
https://www.linkedin.com/in/ishandhall/

© Copyright Absolutdata-Infogain 2022

https://www.absolutdata.com/subscribe/
https://www.linkedin.com/checkpoint/challengesV2/AQGaAPNtpjtiBwAAAW05lmYOsGxPi0y2E-LmNi-TrFniW5CVh7ntla3hF8bCEgBFqAKTirB4N2J64--vyP2ipOOzKuLFtTQsFw
https://twitter.com/Absolutdata
https://www.facebook.com/Absolutdata
https://www.absolutdata.com/analytics-company/contact-us/
https://www.absolutdata.com/

